Skip to main content

Advertisement

Log in

Numerical-Experimental Geometric Optimization of the Ahmed Body and Analyzing Boundary Layer Profiles

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The trade-off between the fuel consumption and drag coefficient makes the investigations of drag reduction of utmost importance. In this paper, the rear-end shape optimization of Ahmed body is performed. Before changing the geometry, to identify the suitable simulation method and validate it, the standard Ahmed body is simulated using − ω shear stress transport (SST) and k-epsilon turbulence models. The slant angle, rear box angle, and rear box length as variables were optimized simultaneously. Optimizations conducted by genetic algorithm (GA) and particle swarm optimization (PSO) methods indicate a 26.3% decrease in the drag coefficient. To ensure the validity of the results, a numerical-experimental study is conducted on the optimized model. Thereafter, the velocity profiles and flow structure in the boundary layers of the original geometry were compared to those of the optimized geometry at different sections. The results indicate that there are points where the velocity profile in the boundary layer can exceed the free stream velocity and return to it again, an overlooked observation in the previous studies. In addition to the streamlines, to better understand the formation of three-dimensional vortexes, the Q-criterion factor is computed and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Abdolmaleki, M., Afshin, H., Farhanieh, B.: Performance analysis of elliptic-profile airfoil cascade for designing reversible axial flow fans. AIAA J. 57, 1492–1501 (2019). https://doi.org/10.2514/1.J057843

    Article  Google Scholar 

  2. Abdolmaleki, M., Mohammadian Bishe, E., Afshin, H., Farhanieh, B.: Numerical and experimental study of a reversible axial flow fan. Int. J. Comut. Fluid Dyn. 34, 173–186 (2020). https://doi.org/10.1080/10618562.2020.1721481

    Article  MathSciNet  Google Scholar 

  3. Ahmed, S.R., Ramm, G., Faltin, G.: Some salient features of the time-averaged ground vehicle wake. SAE Trans. 93, 473–503 (1984). https://doi.org/10.2307/44434262

    Article  Google Scholar 

  4. Aider, J., Beaudoin, J., Wesfreid, J.: Drag and lift reduction of a 3D bluff-body using active vortex generators. Exp. Fluids 48, 771–789 (2010). https://doi.org/10.1007/s00348-009-0770-y

    Article  Google Scholar 

  5. ANSYS: ANSYS CFX. Theory Guide, Release 12 (2009)

  6. Barsotti, D., Divo, E., Boetcher, S.: Optimizing jets for active control of wake refinement for ground vehicles. J. Fluids Eng. 137, 121108 (2015). https://doi.org/10.1115/1.4030913

    Article  Google Scholar 

  7. Bayraktar, I., Landman, D., Baysal, O.: Experimental and computational investigation of Ahmed body for ground vehicle aerodynamics. SAE Tech. Pap. (2001)

  8. Bello-Millán, F.J., Mäkelä, T., Parras, L., Del Pino, C., Ferrera, C.: Experimental study on Ahmed’s body drag coefficient for different yaw angles. J. Wind Eng. Ind. Aerodyn. 157, 140–144 (2016). https://doi.org/10.1016/j.jweia.2016.08.005

    Article  Google Scholar 

  9. Conan, B., Anthoine, J., Planquart, P.: Experimental aerodynamic study of a car-type bluff body. Exp. Fluids 50, 1273–1284 (2011). https://doi.org/10.1007/s00348-010-0992-z

    Article  Google Scholar 

  10. Derakhshan, S., Tavaziani, A., Kasaeian, N.: Numerical shape optimization of a wind turbine blades using artificial bee colony algorithm. J. Energy Resour. Technol. 137, 51210 (2015). https://doi.org/10.1115/1.4031043

    Article  Google Scholar 

  11. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95., Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE, pp 39–43 (1995)

  12. Ebrahimi, M., Jahangirian, A.: Aerodynamic optimization of airfoils using adaptive parameterization and genetic algorithm. J. Optim. Theory Appl. 162, 257–271 (2014). https://doi.org/10.1007/s10957-013-0442-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Eleni, D., Athanasios, T., Dionissios, M.: Evaluation of the turbulence models for the simulation of the flow over a National Advisory Committee for Aeronautics (NACA) 0012 airfoil. J. Mech. Eng. Res. 4, 100–111 (2012). https://doi.org/10.5897/JMER11.074

    Article  Google Scholar 

  14. Fares, E.: Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach. Comput. Fluids 35, 940–950 (2006). https://doi.org/10.1016/j.compfluid.2005.04.011

    Article  MATH  Google Scholar 

  15. Fourrié, G., Keirsbulck, L., Labraga, L.: Wall shear stress characterization of a 3D bluff-body separated flow. J. Fluids Struct. 42, 55–69 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.05.014

    Article  Google Scholar 

  16. Gharali, K., Johnson, D.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.05.005

    Article  Google Scholar 

  17. Golberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addion (1989)

  18. Guilmineau, E.: Computational study of flow around a simplified car body. J. Wind. Eng. Ind. Aerodyn. 96, 1207–1217 (2008). https://doi.org/10.1016/j.jweia.2007.06.041

    Article  Google Scholar 

  19. Guilmineau, E., Deng, G., Leroyer, A., Queutey, P., Wackers, J., Visonneau, M.: Assessment of RANS and DES methods for the Ahmed body. In: ECCOMAS Congress 2016-VII European Congress on Computational Methods in Applied Sciences and Engineering (2016)

  20. Haase, W., Aupoix, B., Bunge, U., Schwamborn, D.: FLOMANIA-a European initiative on flow physics modelling: results of the European-Union funded project, 2002–2004. Springer, New York (2006)

    Book  Google Scholar 

  21. Han, T.: Computational analysis of three-dimensional turbulent flow around a bluff body in ground proximity. AIAA J. 27, 1213–1219 (1989). https://doi.org/10.2514/3.10248

    Article  Google Scholar 

  22. Hinze, J.: Turbulence. McGraw-Hill, New York (1975)

    Google Scholar 

  23. Holland, J.: Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992)

  24. Hu, X., Qin, P., Guo, P., An, Y.: Effect of turbulence parameters on numerical simulation of complex automotive external flow field. In: Applied Mechanics and Materials. Trans Tech Publ, pp 1062–1067 (2011)

  25. Hucho, W.: Aerodynamics of Road Vehicles: From Fluid Mechanics to Vehicle Engineering. Elsevier Science, Amsterdam (2013)

    Google Scholar 

  26. Jaume, A., Wild, J.: Aerodynamic design and optimization of a high-lift device for a wind turbine airfoil. In: New Results in Numerical and Experimental Fluid Mechanics X. Springer, New York, pp 859–869 (2016)

  27. Joodaki, A., Ashrafizadeh, A.: Surface shape design in fluid flow problems via hybrid optimization algorithms. Aerosp. Sci. Technol. 39, 639–651 (2014). https://doi.org/10.1016/j.ast.2014.06.012

    Article  Google Scholar 

  28. Joseph, P., Amandole, X., Aider, J.: Drag reduction on the 25° slant angle Ahmed reference body using pulsed jets. Exp. Fluids 520, 1169–1185 (2012). https://doi.org/10.1007/s00348-011-1245-5

    Article  Google Scholar 

  29. Kaiser, E., Li, R., Noack, B.: On the control landscape topology. In: The 20th World Congress of the International Federation of Automatic Control (IFAC). pp 1–5 (2017)

  30. Kapadia, S., Roy, S., Vallero, M., Wurtzler, K., Forsythe, J.: Detached-eddy simulation over a reference Ahmed car model. In: Direct and large-eddy simulation V. Springer, pp 481–488 (2004)

  31. Katz, J.: Race Car Aerodynamics: Designing for Speed. R. Bentley (1995)

  32. Kaveh, A., Shamsapour, N., Sheikholeslami, R., Mashhadian, M.: Forecasting transport energy demand in Iran using meta-heuristic algorithms. Int. J. Optim. Civ. Eng. 2, 533–544 (2012)

    Google Scholar 

  33. Krajnovic, S.: Optimization of aerodynamic properties of high-speed trains with CFD and response surface models. In: The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains. Springer, Berlin, Heidelberg, pp 197–211 (2009)

  34. Krajnovic, S., Davidson, L.: Flow around a simplified car, part 1: large eddy simulation. J. Fluids Eng. 127, 907–918 (2005). https://doi.org/10.1115/1.1989371

    Article  Google Scholar 

  35. Li, Y., Cui, W., Jia, Q., Li, Q., Yang, Z., Morzyński, M., Noack, B.: Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body (2019)

  36. Lienhart, H., Stoots, C., Becker, S.: Flow and Turbulence Structures in the Wake of a Simplified Car Model (Ahmed Modell). In: New Results in Numerical and Experimental Fluid Mechanics III. Springer, Berlin, Heidelberg, pp 323–330 (2002)

  37. Luckhurst, S., Varney, M., Xia, H., Passmore, M.A., Gaylard, A.: Computational investigation into the sensitivity of a simplified vehicle wake to small base geometry changes. J. Wind Eng. Ind. Aerodyn. 185, 1–15 (2019). https://doi.org/10.1016/j.jweia.2018.12.010

    Article  Google Scholar 

  38. Mathey, F., Cokljat, D.: Zonal multi-domain RANS/LES simulation of airflow over the Ahmed body. Eng. Turbul. Model Exp. 6, 647–656 (2005). https://doi.org/10.1016/B978-008044544-1/50062-5

    Article  Google Scholar 

  39. Meile, W., Brenn, G., Reppenhagen, A., Lechner, B., Fuchs, A.: Experiments and numerical simulations on the aerodynamics of the Ahmed body. CFD Lett. 3, 32–39 (2011)

    Google Scholar 

  40. Mejia, O., Gómez, S., Otero, D., Camargo, L.: Analysis of the vorticity in the near wake of a station wagon. J. Fluids Eng. 139, 21105 (2017). https://doi.org/10.1115/1.4034523

    Article  Google Scholar 

  41. Menter, F.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  42. Metka, M., Gregory, J.: Drag reduction on the 25-deg ahmed model using fluidic oscillators. J. Fluids Eng. 137, 51108 (2015). https://doi.org/10.1115/1.4029535

    Article  Google Scholar 

  43. Minguez, M., Pasquetti, R., Serre, E.: High-order large-eddy simulation of flow over the “Ahmed body” car model. Phys. Fluids 20, 095101 (2008). https://doi.org/10.1063/1.2952595

    Article  MATH  Google Scholar 

  44. Moghimi, P., Rafee, R.: Numerical and experimental investigations on aerodynamic behavior of the ahmed body model with different diffuser angles. J. Appl. Fluid Mech. (2018). https://doi.org/10.18869/acadpub.jafm.73.247.27923

    Article  Google Scholar 

  45. Mohammadi, B., Derakhsan, S.: Efficiency improvement of centrifugal reverse pumps. ASME J. Fluid Eng. 131, 131–132 (2009). https://doi.org/10.1115/1.3059700

    Article  Google Scholar 

  46. Mohammadi, B., Pironneau, O.: Analysis of the k-epsilon Turbulence Todel, (Aug) 1st. Wiley, New Jersey (1993)

    Google Scholar 

  47. Pehlivanoglu, Y., Yagiz, B.: Aerodynamic design prediction using surrogate-based modeling in genetic algorithm architecture. Aerosp. Sci. Technol. 23, 479–491 (2012). https://doi.org/10.1016/j.ast.2011.10.006

    Article  Google Scholar 

  48. Sasaki, D., Obayashi, S., Nakahashi, K.: Navier-Stokes optimization of supersonic wings with four objectives using evolutionary algorithm. J. Aircr. 39, 621–629 (2002). https://doi.org/10.2514/2.2974

    Article  Google Scholar 

  49. Serre, E., Minguez, M., Pasquetti, R., Guilmineau, E., Deng, G., Kornhaas, M., Schäfer, M., Fröhlich, J., Hinterberger, C., Rodi, W.: On simulating the turbulent flow around the Ahmed body: A French-German collaborative evaluation of LES and DES. Comput. Fluids 78, 10–23 (2013). https://doi.org/10.1016/j.compfluid.2011.05.017

    Article  MathSciNet  MATH  Google Scholar 

  50. Shahrokhi, A., Jahangirian, A.: A surrogate assisted evolutionary optimization method with application to the transonic airfoil design. Eng. Optim. 42, 497–515 (2010). https://doi.org/10.1080/03052150903305468

    Article  Google Scholar 

  51. Sims-Williams, D.: Self-excited aerodynamic unsteadiness associated with passenger cars. (PhD Dissertation), Durham University (2001)

  52. Spohn, A., Gilliéron, P.: Flow separations generated by a simplified geometry of an automotive vehicle. In: IUTAM Symposium: unsteady separated flows. Citeseer, pp 8–12 (2002)

  53. Strachan, R., Knowles, K., Lawson, N.: The vortex structure behind an Ahmed reference model in the presence of a moving ground plane. Exp. Fluids 42, 659–669 (2007). https://doi.org/10.1007/s00348-007-0270-x

    Article  Google Scholar 

  54. Strachan, R., Knowles, K., Lawson, N.: A CFD and experimental study of an Ahmed reference model. SAE Tech. Pap. (2004). https://doi.org/10.4271/2004-01-0442

    Article  Google Scholar 

  55. Thacker, A., Aubrun, S., Leroy, A., Devinant, P.: Experimental characterization of flow unsteadiness in the centerline plane of an Ahmed body rear slant. Exp. Fluids 54, 1–16 (2013). https://doi.org/10.1007/s00348-013-1479-5

    Article  Google Scholar 

  56. Thacker, A., Aubrun, S., Leroy, A., Devinant, P.: Effects of suppressing the 3D separation on the rear slant on the flow structures around an Ahmed body. J. Wind Eng. Ind. Aerodyn. 107, 237–243 (2012). https://doi.org/10.1016/j.jweia.2012.04.022

    Article  Google Scholar 

  57. Thacker, A., Aubrun, S., Leroy, A., Devinant, P.: Unsteady analyses of the flow separation on the rear window of a simplified ground vehicle model. In: Proceedings of the 28th AIAA Applied Aerodynamics Conference. p 4569 (2010)

  58. Tulapurkara, E.: Turbulence models for the computation of flow past airplanes. Prog. Aerosp. Sci. 33, 71–165 (1997). https://doi.org/10.1016/S0376-0421(96)00002-4

    Article  Google Scholar 

  59. Tunay, T., Sahin, B., Ozbolat, V.: Effects of rear slant angles on the flow characteristics of Ahmed body. Exp. Therm. Fluid Sci. 57, 165–176 (2014). https://doi.org/10.1016/j.expthermflusci.2014.04.01

    Article  Google Scholar 

  60. Vino, G., Watkins, S., Mousley, P., Watmuff, J., Prasad, S.: Flow structures in the near-wake of the Ahmed model. J. Fluids Struct. 20, 673–695 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.03.006

    Article  Google Scholar 

  61. Vino, G., Watkins, S., Mousley, P., Watmuff, J., Prasad, S.: The unsteady near-wake of a simplified passenger car. In: Proceedings of the 15th Australasian Fluid Mechanics Conference The University of Sydney, Sydney, Australia. pp 13–17 (2004)

  62. Wang, X., Zhou, Y., Pin, Y., Chan, T.: Turbulent near wake of an Ahmed vehicle model. Exp. Fluids 54, 1490 (2013). https://doi.org/10.1007/s00348-013-1490-x

    Article  Google Scholar 

  63. Wilcox, D.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26, 1299–1310 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the invaluable assistance of Ali Kamali, Razie Aslani, and Navid Ehtiati, graduate students at Sharif University of Technology; Kaveh Ghorbanian, faculty member of Aerospace at Sharif University of Technology; Parisa M. Sharouni, MSc student at TMU; and Ehsan Allah Saadati, CFD expert. Their without-expectation helps are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Afshin.

Additional information

Communicated by Mauro Pontani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolmaleki, M., Mashhadian, A., Amiri, S. et al. Numerical-Experimental Geometric Optimization of the Ahmed Body and Analyzing Boundary Layer Profiles. J Optim Theory Appl 192, 1–35 (2022). https://doi.org/10.1007/s10957-021-01932-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01932-w

Keywords

Navigation